Cramer's V Cramer's V

The megapixel trap

Visual manipulation of data using poorly designed charts can distort data interpretation. The most common errors, such as missing axes, manipulated scales, and confusing pie charts, are described, which can lead to erroneous conclusions. Learning to detect these errors will allow us to improve our ability to visually analyze and interpret data.

Read MoreThe megapixel trap
Cramer's V Cramer's V

Apophenia

Overfitting occurs when an algorithm over-learns the details of the training data, capturing not only the essence of the relationship between them, but also the random noise that will always be present. This negatively affects its performance and its ability to generalize when we introduce new data, not seen during training.

Read MoreApophenia
Esta web utiliza cookies propias y de terceros para su correcto funcionamiento y para fines analíticos. Al hacer clic en el botón Aceptar, aceptas el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Antes de aceptar puedes ver Configurar cookies para realizar un consentimiento selectivo.   
Privacidad